Ma ruchomy średni model


Średnia ruchoma - MA. BREAKING DOWN Średnia ruchoma - MA. Za przykład SMA należy wziąć pod uwagę zabezpieczenia z następującymi cenami zamknięciami powyżej 15 dni. Week 1 5 dni 20, 22, 24, 25, 23.Week 2 5 dni 26, 28 , 26, 29, 27.Week 3 5 dni 28, 30, 27, 29, 28. 10-dniowe średnie średnie ceny zamknięcia za pierwsze 10 dni jako pierwszy punkt danych Następny punkt danych spadł najwcześniej cena, dodaj cenę w dniu 11 i średnią, i tak dalej, jak pokazano poniżej. Jak wspomniano wcześniej, MA pozostają w sprzeczności z ceną bieżącą, ponieważ są one oparte na wcześniejszych cenach, tym dłuższy jest okres MA, tym większe opóźnienie 200-dniowa MA będzie miała znacznie większy stopień opóźnienia niż 20-dniowy MA, ponieważ zawiera ceny za 200 dni. Długość MA do wykorzystania zależy od celów handlowych, przy krótszych terminach sprzedaŜy krótkoterminowej i długoterminowych instrumentów pochodnych bardziej dostosowanych do inwestorów długoterminowych Dwudziestopięcioletnie studia magisterskie są szeroko stosowane przez inwestorów i przedsiębiorców, z przerwami powyżej i poniżej tej średniej ryczałtowej koniunktury jest ważnym sygnałem handlowym. Mają one również ważne emisje transakcyjne na własną rękę, lub gdy dwie średnie przecina rosnąca MA wskazuje, że bezpieczeństwo jest w trendzie wzrostowym, a malejąca MA wskazuje, że jest w trendzie spadkowym Podobnie, dynamika wzrostu jest potwierdzony przejściowym zwrotem, który pojawia się, gdy krótkoterminowa krzywa MA przecina powyżej dł. Długoterminowego Wzrostu Momentu Pewnego Dynamiki jest potwierdzony krzywą spadkową, która pojawia się, gdy krótkoterminowa MA przecina poniżej długoterminowej MA.2 1 Moving Average Models Modele MA. Modele serii czasowej znane jako modele ARIMA mogą obejmować terminy autoregresji i lub przechodzić średnie wartości. W pierwszym tygodniu dowiedzieliśmy się, że określenie autoregresji w modelu szeregu czasowego dla zmiennej xt jest opóźnioną wartością xt Na przykład opóźnieniem 1 autoregresji termin jest x t-1 pomnożony przez współczynnik Ta lekcja definiuje średnie ruchome wyrażenia. Średniometr przecięcia w modelu szeregów czasowych jest błędem z przeszłości pomnożony przez współczynnik. Nagajmy nader N 0, sigma 2w, co oznacza, że w t są identycznie, niezależnie rozdzielane, każdy z rozkładem normalnym o średniej 0 i tej samej wariancji. Średni model przenoszenia 1 rzędu, oznaczony jako MA 1 jest równy. xt mu wt theta1w. Średni model rzędowy, oznaczony symbolem 2. xt mu wt theta1w theta2w. Średni model rzędu q, oznaczony przez MA q. xt mu wt theta1w theta2w kropki thetaqw. Uwaga Wiele podręczników i programów definiuje model z negatywnymi znakami przed warunkami To nie zmienia ogólnych teoretycznych właściwości modelu, chociaż odwraca znaki algebraiczne szacowanych wartości współczynników i nieokreślonych warunków w wzory dla ACF i wariancji Musisz sprawdzić oprogramowanie w celu sprawdzenia, czy użyto negatywnych lub pozytywnych oznaczeń, aby prawidłowo napisać szacowany model R korzysta z pozytywnych oznaczeń w modelu leżącym u podstaw, tak jak to ma miejsce. Teoretyczne właściwości serii czasowej z model MA 1.Należy zwrócić uwagę, że jedyną niższą wartością w teoretycznym ACF jest dla opóźnienia 1 Wszystkie pozostałe autokorelacje są równe 0 W ten sposób próbka ACF o znacznej autokorelacji tylko w punkcie 1 jest wskaźnikiem możliwego modelu MA 1. Dla zainteresowanych studentów, dowody dotyczące tych właściwości stanowią załącznik do tej broszury. Przykład 1 Załóżmy, że model MA 1 to xt 10 wt 7 w t-1, w którym przewyższa N 0,1 Tak więc współczynnik 1 0 7 Th e teoretyczne ACF jest podane przez. Za podstawie poniższego wykresu ACF przedstawiona jest teoretyczna ACF dla MA 1 z 1 0 7 W praktyce próbka wygrała t zwykle zapewnia taki jasny wzór Używając R, symulowaliśmy n 100 wartości próbki przy użyciu modelu xt 10 w 7 w t-1 gdzie w t. iid N 0,1 Dla tej symulacji, szeregowy szereg wykresów z przykładowych danych Poniżej możemy powiedzieć wiele z tej wykresu. Przykładowy ACF dla symulacji dane następują Widzimy skok przy opóźnieniu 1, a następnie ogólnie wartości nieistotne dla opóźnień 1 Pamiętaj, że próbka ACF nie jest zgodna z teoretycznym wzorcem MA 1, co oznacza, że ​​wszystkie autokorelacje z opóźnieniami 1 będą 0 A inna próbka miałaby nieco odmienną próbkę ACF pokazaną poniżej, ale najprawdopodobniej miałyby tę samą szeroką charakterystykę. Właściwości teoretyczne serii czasowej z modelem MA 2. Dla modelu MA 2, teoretyczne właściwości są następujące. Zwróć uwagę, że jedyne niż zerowe wartości w teoretycznym ACF dotyczą opóźnień 1 i 2 Autocorrelat jony dla wyższych opóźnień są równe 0 Więc próbka ACF o znacznych autokorelacjach w przypadku opóźnień 1 i 2, ale nieistotne autokorelacje dla wyższych opóźnień wskazują na możliwy model MA2.iid N 0,1 Współczynniki to 1 0 5 i 2 0 3 Ponieważ jest to MA 2, ten teoretyczny ACF będzie miał wartości inne niż z opóźnieniami 1 i 2. Wartości dwóch niezależnych autokorelacji są takie, jak wykresy teoretycznego ACF. Jak prawie zawsze jest tak, dane próbki wygrały t zachowują się dość tak doskonale jak teoria Symulacja n 150 wartości próbek dla modelu xt 10 wt 5 w t-1 3 w t-2 gdzie w t. iid N 0,1 Seria szeregów czasowych wykresów danych jak następuje dane z próbki MA1 można wiele powiedzieć. Przykładowy ACF dla symulowanych danych Poniższy wzorzec jest typowy dla sytuacji, w których może być użyteczny model MA 2 Istnieją dwa statystycznie istotne skoki przy opóźnieniach 1 i 2, a następnie nie - znaczne wartości dla innych opóźnień Zauważ, że z powodu błędu pobierania próbek próbka ACF nie była zgodna dokładny opis teoretyczny. ACF dla General MA q Models. A właściwość modeli MA q w ogóle jest to, że istnieją niezerowe autokorelacje dla pierwszych q opóźnień i autokorelacji 0 dla wszystkich opóźnień q. Niezależność połączenia między wartościami 1 i rho1 w modelu MA 1 W modelu MA 1, dla dowolnej wartości równej 1 1 odwzorowanie 1 daje tę samą wartość dla przykładu. Użyj 0 5 dla 1, a następnie użyj 1 0 5 2 dla 1 Otrzymasz rho1 0 4 w obu przypadkach. Aby zaspokoić teoretyczne ograniczenie zwane "invertibility", ograniczamy modele MA1 do wartości z wartością bezwzględną mniejszą niż 1 W podanym przykładzie, 1 0 5 będzie dozwoloną wartością parametru, podczas gdy 1 1 0 5 2 nie będzie. Odwracalność modeli MA. Nazwa typu MA jest odwracalna, jeśli jest algebraiczna równoważna modelowi AR z nieskojarzonym zbiegiem Zbieżności, rozumiemy, że współczynniki AR spadają do 0, gdy wracamy w czasie. Invertibility to ograniczenie zaprogramowane w oprogramowanie serii czasu używane do oszacowania współczynnika modele modeli z hasłami MA nie jest czymś, co sprawdzamy w analizie danych Dodatkowe informacje o ograniczeniu wstrząsów dla modeli MA 1 podano w dodatku. Uwagi wstępne Uwaga: Model MA q z określonym ACF jest tylko jeden model odwracalny Warunkiem koniecznym do odwrócenia jest to, że współczynniki mają takie wartości, że równanie 1- 1 y - - qyq 0 zawiera rozwiązania dla y, które leżą poza kołem jednostkowym. R Kod dla przykładów. W przykładzie 1 wykreślono teoretyczne ACF modelu xt 10 wt 7w t-1, a następnie symulowane n 150 wartości z tego modelu i wykreślono szereg próbkowania i próbkę ACF dla danych symulowanych Polecenia R służące do sporządzenia teoretycznej ACF były. acfma1 ARMAacf ma c 0 7, 10 opóźnień ACF dla MA 1 z theta1 0 7 opóźnień 0 10 tworzy zmienną o nazwie opóźnienia waha się od 0 do 10 opóźnień wydruku, acfma1, xlim c 1,10, ylab r, typu h, głównego ACF dla MA 1 z theta1 0 7 abline h 0 dodaje oś poziomą do wykresu Pierwsze polecenie określa ACF i zapisuje je w obiekcie o nazwie acfma1 naszego wyboru. Konstrukcja poleceń poleceń trzeciego polecenia jest opóźniona w stosunku do wartości ACF dla opóźnień 1 do 10 Parametr ylab etykietuje na osi y, a główny parametr ustawia wartość tytuł na wykresie. Aby zobaczyć wartości liczbowe ACF wystarczy użyć polecenia acfma1. Symulacje i wykresy zostały wykonane za pomocą następujących poleceń. lista ma c 0 7 Symuluje n 150 wartości z MA 1 x xc 10 dodaje 10, aby uzyskać średnią 10 domyślnych wartości symulacji na wartość 0 wykres x, typ b, główne Symulowane dane MA 1 acf x, xlim c 1,10, główne ACF dla symulacji dane przykładowe. W przykładzie 2 wykreślono teoretyczny ACF modelu xt 10 wt 5 w t-1 3 w t-2, a następnie symulowano n 150 wartości z tego modelu i wykreślono szereg próbkowania i próbkę ACF dla symulacji dane Zastosowano komendy R. acfma2 ARMAacf ma c 0 5,0 3, acfma2 opóźnienia 0 10 opóźnień w wydruku, acfma2, xlim c 1,10, ylab r, typ h, główne ACF dla MA 2 z theta1 0 5, theta2 0 3 abline h 0 lista ma c 0 5, 0 3 x xc 10 wykres x, typ b, główny Symulowany model MA 2 Seria acf x, xlim c 1,10, główny ACF dla symulowanego MA 2 Dane. Podpis Dowodu Własności MA 1 Dla zainteresowanych studentów, oto dowody na teoretyczne właściwości modelu MA1. Tekst zmienności xt tekst mu wt theta1 w 0 tekst tekst wt tekstowy theta1w sigma 2w theta 21 sigma 2w 1 theta 21 sigma 2w. W przypadku h 1, poprzedni wyrażenie 1 w 2 Dla każdego h 2 , poprzedni wyrażenie 0 Powodem jest to, że z definicji niezależności wt E wkwj 0 dla dowolnego kj Ponadto, ponieważ wt mają średnie 0, E wjwj E wj 2 w 2. Dla serii czasowych. Przyprowadź ten wynik, aby uzyskać ACF podany powyżej. Można odwrócić model MA jest to, że można napisać jako nieskończony model AR zamówienia, które zbieżne tak, że współczynniki AR zbiegają się do 0, gdy poruszamy się nieskończenie z powrotem w czasie Pokażemy invertibility dla modelu MA 1. Następnie relacja substytucyjna 2 dla t-1 w równaniu 1. 3 zt wt theta1 z - theta1w wt theta1z - theta2w. At równanie t-2 staje się równaniem 2. Następnie zastępujemy relację 4 dla w t-2 w równaniu 3. zt wt teta1 z - teta 21w wagi theta1z - theta 21 z - theta1w wagi theta1z - theta1 2z theta 31w. Jeśli mielibyśmy kontynuować nieskończoność otrzymamy model AR bez końca. zt wt theta1 z-theta 21z theta 31z - theta 41z dots. Note jednak należy pamiętać, że jeśli 1 1, współczynniki mnożące opóźnienia z będą wzrastać nieskończenie w miarę przesuwania się w czasie Aby temu zapobiec, potrzebujemy 1 1 Jest to warunek niewymiennego modelu MA 1. Model nieskoordynowanego zamówienia MA. W tygodniu 3 zobaczymy, że model AR1 można przekształcić w model MA bez końca. xt - mu wt phi1w phi 21w kropki phi k1 w kropkach sum phi j1w. Powyższe sumienie przeszłych hałasu białego jest znane jako przyczyna reprezentacji AR1 Innymi słowy, xt jest specjalnym typem MA o nieskończonej liczbie terminów cofanie się w czasie To jest nazywany nieskończonym rzędem MA lub MA Skończone rzędu MA jest nieskończonym porządkiem AR i dowolnym skończonym zleceniem AR jest nieskończonym zleceniem MA. Recall w tygodniu 1 zauważyliśmy, że wymóg stacjonarnego AR 1 jest taki, 1 1 Niech s obliczy Var xt używając reprezentacji przyczynowej. W ostatnim kroku używa się podstawowego faktu o seriach geometrycznych, które wymagają phi1, w przeciwnym wypadku szeregowe rozbieżności.8 4 Zmienne modele średnie. Zamiast używać przeszłych wartości zmiennej prognozowanej w regresji , model średniej ruchomości wykorzystuje przeszłe błędy prognozy w modelu regresji. yc i teta eta theta kropki theta e. where et jest białe szumy Odnoszę się do tego jako model MA q Oczywiście, nie obserwujemy wartości et, więc nie jest to regresja w zwykłym sensie. wartość yt może być traktowana jako ważona średnia ruchoma ostatnich kilku błędów prognozy. Nie należy jednak mylić średnich ruchomej z ruchomej wygładzonej średniej, o której mówiliśmy w rozdziale 6. Średniometr używany jest do prognozowania przyszłych wartości przy jednoczesnym średnim wygładzeniu jest używany do szacowania cyklu trendu ostatnich wartości. Rysunek 8 6 Dwa przykłady danych z ruchome modele średnie o różnych parametrach Lewy MA 1 z yt 20 i 0 8e t-1 Prawy MA 2 z ytet - e t-1 0 8e t-2 W obu przypadkach normalnie rozprowadzany jest szum biały o średniej zera i wariancji. Rysunek 8 6 przedstawia niektóre dane z modelu MA 1 i modelu MA 2 Zmiana parametrów theta1, kropek, teatru powodują, że w różnych wzorcach szeregów czasowych Podobnie jak w modelach autoregresji, wariancja błąd błędów et zmieni tylko skalę serii, a nie wzorzec. Można pisać dowolny stacjonarny model ARp jako model inftykatu MA Na przykład, używając wielokrotnego zastąpienia, możemy to udowodnić za model AR1. rozpoczyna yt phi1y i phi1 phi1y e i phi1 2y phi1 e i phi1 3y phi1 2e phi1 e i koniec tekstu. Zaprojektowano -1 phi1 1, wartość phi1k będzie mniejsza, gdy k się powiększy W końcu otrzymamy. yt et phi1 e phi1 2 e phi1 3 e cdots. an MA infty process. Jeżeli odwzorowujemy kilka ograniczeń na parametry MA, wówczas model MA nazywa się odwracalnym. Oznacza to, że możemy napisać dowolny proces odwrócony MA q, proces AR nietypowy. Inwersalne modele nie tylko umożliwiają nam konwersję z modeli MA do modeli AR mają również pewne właściwości matematyczne, które ułatwiają ich stosowanie w praktyce. Ograniczenia inwersji są podobne do ograniczeń stacjonarnych. Dla MA 1 model -1 theta1 1.Dla modelu MA2 -1 theta2 1, theta2 theta1 -1, theta1-theta2 1.Z bardziej skomplikowane warunki zachowają się dla q ge3 Ponownie, R zajmie się tymi ograniczeniami podczas szacowania modeli.

Comments

Popular Posts